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Abstract Wireless robotics enables wide applications of service robots to benefit human
life. However, effective machine-to-machine communications would be the foundation of
operation. With cloud-based architecture, we innovatively demonstrate in-network compu-
tation to significantly alleviate the requirement of communication bandwidth for multi-hop
networking, to achieve spectrum-efficient M2M communications. We further characterize
the coverage geographical of machines to impact effective operation of wireless robotics.
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1 Introduction

Migrating from manufacturing robotics and later entertainment robotics, service robot-
ics attracts tremendous research interests as a new frontier of information communica-
tion technology (ICT). Autonomous wireless communications among machines, known as
machine-to-machine (M2M) communications, play the critical role to control these intelligent
machines and to execute intelligent missions. We name robotics of M2M communications
capability as wireless robotics. Typical communication capability for service robots aims at
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Fig. 1 Cloud-based M2M communications

special purpose such as rescue robotics [1], or control and commend within a robot squad
[2] with potential multi-hop ad hoc networking [3]. Under the scenario of cloud computing,
M2M communications and subsequent wireless robotics based on cloud open a new era in
wireless communications [4,5], to enable close interaction of cyber-physical systems [6].

We summarize the M2M communication architecture as Fig. 1 Cloud connects data centers
and servers, to enable and to maintain variety of services. Through gateways to wireless
infrastructure that supports high bandwidth for transparent communication and networking
in operations. Wireless infrastructure shall be 3GPP type cellular systems [7], or IEEE 802
type wide/local area networks. Wireless infrastructure typically connects data aggregators
(DAs) that collect or exchange information with small traffic-load machines (such as sensors),
such that sensors can only equip simple wireless communication capability via appropriate
battery efficient short-range wireless communication methodology. Such sensors or machines
can be viewed as machine swarm/ocean due to tremendous number of wireless devices,
typically several orders more than todays wireless personal communication systems like
cellular networks. The deployment of machine swarm cannot be fully controlled, while only
DAs might be possibly controlled. Therefore, a heterogeneous network structure is formed
[8], and is widely investigated in recent literature. To ensure quality-of-service under such
cyber-physical system scenario, a systematic approach, even under spectrum sharing, has
been successfully developed [9].

Machine swarm communications face a few technical challenges:

1. Spectrum Scarcity: Limited spectrum is likely available for such a huge number of wire-
less devices. Though each device might have limited traffic volume and low duty cycle, the
aggregated traffic with considered overhead in classic multiple access [10] creates a new
challenge for energy-efficient access. Consequently, spectrum sharing is expected. Spec-
trum sharing can be realized in two ways: wireless devices in multiple systems/networks
to share a common frequency band like todays 2.4 GHz ISM band (except much more
busy spectrum utilization and likely less control), or cognitive radio [11,12] allowing
machines to transport their traffic in certain moments when the primary system does not
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utilize the spectrum. Spectrum efficiency shall be counted on end-to-end throughput per
bandwidth, rather than bits per bandwidth in physical layer transmission.

2. Scalability: M2M communications have to deal with different scales of information
exchange, and thus scalability is critical in real applications.

3. Deployment and Device Management: Successful M2M communications rely on effec-
tive deployment of machines/sensors. Most of machines/sensors have limited reliability
due to practical concerns. Under defection of out of battery, device management [13]
determines whether M2M communications can serve the system in a long run.

Furthermore, above study usually assumes low-mobility, while vehicular M2M commu-
nications under such scenario is rather open at this time, such as wireless robotics. Conse-
quently, a new challenge for M2M communications in wireless robotics is mobility. In this
paper, we are going to explore mobility and other challenges associated with mobility, and
thus to propose a new angle to design information system supporting wireless robotics. Past
design philosophy to transport data to destination for processing and/or computing might
not be efficient anymore. Tradeoff between communications and in-network computations
inside the system shall be the way enabling wireless robotics as we can see from this paper.

This paper is organized as follows. Cloud-based M2M communication architecture and
related technology considerations are described in Sect. 2. We introduce in-network compu-
tation to exchange communication bandwidth via a novel compress-and-forward routing for
multi-hop networking, in Sect. 3. Further system operation issues are discussed in Sect. 4.

2 Cloud-Based M2M Communication Architecture for Wireless Robotics
and Enabling Technology

Robotics via Internet has been investigated for years [14], which is further fertilized by cloud
computing [1]. With mobile communication into the focus of picture, the network architecture
for wireless robotics can be specifically suggested and illustrated as the heterogeneous net-
work structure in Fig. 2. The solid black lines or curves stand for wired or wireless backbone
networking to the cloud. The control center monitors the activities of robots, through the data
aggregator (DA) that collects or exchanges information with sensors on each robot. In the
field or on the roadside, there are tremendous machines (including DAs) or sensors to form the
machine swarm, which can collect varieties of information for the operation and missions of
robots (or intelligent mobile/vehicular devices). The sensors on each robot (i.e. green nodes
and yellow DAs in Fig. 2) and sensors in machine swarm (i.e. orange nodes and red DAs
in Fig. 2) may communicate through different wireless networks, and we consequently face
a heterogeneous network structure among machines, in addition to heterogeneous network
structure for wireless infrastructure and machines (green curve lines to wireless infrastructure
and green nodes to yellow DAs; blue curve links to wireless infrastructure and orange nodes
to red DAs).

With an overview on large sensor networks [13], there still exist a few fundamental ques-
tions worth further clarifications or investigations for M2M communications in this scenario.

1. To hop or not to hop for the body area network on each robots (green nodes and yellow
DAs) (Fig. 3)

2. To hop or not to hop in machine swarm (orange nodes and red DAs)
3. When spectrum sharing is likely required, is it feasible to establish M2M communications

in such complicated heterogeneous network structure?
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Fig. 2 Heterogeneous network architecture for wireless robotics

Fig. 3 a To hop or b not to hop for sensors with a robot. a Multi-hop ad hoc networking (from sensors to
data aggregator). b One-hop star networking (from sensors to daa aggregator)

4. Any resource efficient network design under such a scenario of mobility and thus traffic
(for robots)?

The first question can be considered in the following figure. Within the body area of a robot,
the transmission range of all sensors to DA shall be facilitated the entire networking. Multi-
hop is not necessary but mesh networking to extend reliability is useful. This is almost exactly
like the networking for healthcare monitoring for an individual [13]. Appropriate medium
access of star-type network topology seems working well, and mesh networking can be used
to extend coverage. The second question is more complicated, to hop or not to hop in machine
swarm. Among many pros and cons for each approach, we focus on the very fundamental
issues. Due to the battery efficiency or energy harvest efficiency, sensors and machines must
employ energy-efficient communication and networking, which inevitably suggests multi-
hop ad hoc networking. However, successful operation of modern ad hoc networks relies on
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good (if not full) knowledge of end-to-end network information such as routing table etc. and
consequently good amount of exchange of control packets and overhead [15], which limits
applications on energy-efficient and spectrum-efficient wireless devices [11]. It is not difficult
to show that just relying on multi-hop cooperative ad hoc networking results in long rout-
ing delay and even time-insensitive data traffic might be inappropriate, not to mention QoS,
in M2M communications. Particularly, M2M communications for wireless robotics would
not be able to stand for extremely long delay due to mobility and consequently location-
dependent nature for data. To meet the requirement of time sensitive data transportation and
QoS constraints for certain application such as video surveillance or navigation in wireless
robotics, small-world network [16] can be employed to construct a new heterogeneous net-
work structure using DAs as the access points to wireless infrastructure (like data highway),
which not only can significantly reduce routing delay in the machine swarm, but also can
meet QoS requirements by leveraging effective bandwidth and multi-path transmission [17].

A more interesting issue might be the third question. Large sensor networks are already
fundamentally facing a lot of technology challenges [18]. Under spectrum sharing wireless
networks or cognitive radio networks, whether to hop or not and subsequent networking
issues have not been fully understood. The complicated mechanism relies on understanding
of resulting interference analysis, in addition to traditional ad hoc networking. Such analy-
sis has been studied in [19]. A further question is to understand connectivity in the large
machine swarm as suggested in [18]. Under complicated interference analysis, an emerging
technology known as stochastic geometry [20] is useful. A series of explorations to analyti-
cally characterize the connectivity of CRN and spectrum sharing ad hoc networks have been
conducted [21]. As pointed in [18], connectivity plays a critical role in establishing large
sensor and machine networks. It also demonstrates feasibility of spectrum sharing multi-hop
networks. Rate and delay tradeoff can be enhanced by network coding, to ensure smooth
operation of multi-hop networks [22]. Network cooperation is shown helpful in [23], and
error control to improve network performance is also verified [24]. All these suggest us that
multi-hop spectrum sharing with heterogeneous network architecture is feasible for machine
swarm communications.

The last question is introducing another key factor, mobility, into network design. Sensor
network to enable cyber-physical robotic systems emerges as an important subject in recent
years [25–28], which involves robot routing, information packet routing, mobility, and data
collection and fusion. In the following of this paper, we shall explore some important issues
toward effective design.

3 Compress-and-Forward Information Collection in the Network of Correlated
Sources

Almost all research in sensor networks and M2M communications assume rather static net-
work topology. However, this is not true in wireless robotics. A robot moves based on infor-
mation collection from sensors, due to the movement of this robot, the associated network
topology is no longer static. It creates further problems for information collection from sen-
sors to DA (i.e. robot) in multi-hop networking. As the DA is moving forward, the multi-hop
data packets might trace behind robot, particularly under spectrum sharing to create extra
delay due to waiting for spectrum availability. Spectrum efficient data collection from sensors
is therefore a critical technology that has been overlooked in literature, and we will propose a
novel technology based on in-network computation [29], beyond the widely considered data
aggregation [30] or distributed source coding [31–34], in this section.
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Fig. 4 The two cases of compress-and-forward transmission with its corresponding transmission flow. a Serial
transmission. b Parallel transmission

3.1 Rationale of Compress-and-Forward Mechanism

Noting nature of machine to machine (M2M) [35] and wireless sensor network (WSN)[31],
the observed information between source nodes are likely correlated. Efficiently transmission
and distributed encoding of observed information becomes essential especially when the
network size becomes larger. Distributed source coding rate region of joint correlated sources
was originally studied by Slepian and Wolf [32], and numerous subsequent efforts [34,36]
extend the study into network information flow. Based on type of information transmission,
we conclude two basic types of information forwarding: serial and parallel, as shown in
Fig. 4. In Fig. 4, two source nodes with source (X1, X2) ∼ f (x1, x2) encoded with rate
R1, R2 to destination node D with two different ways, the optimal rate to lossless is also
different. In case (a) the encoding rate R1 > H(X1|X2), R2 > H(X1, X2) is achievable
and optimal while in case (b), a typical example of Slepian–Wolf, the optimal rate could be
R1 > H(X1|X2), R2 > H(X2).

In Fig. 4 the encoding rate is obviously achievable. But in parallel transmission case, the
optimal rate may be practical by the feature of wireless communication that every transmis-
sion forwarded via same medium, i.e. side information can be obtained by overhearing. In
this way, nodes do not merely encode and forward observed information, a more efficient data
compression rate may be applied by overhearing and relaying information, and we call this
“compress-and-forward” transmission. In this work we assume the compress-and-forward
method is done perfectly, that is, the optimal rate is applied to source once information
overhearing is done.

The network layer information flow with correlated source is complicated. Traditional
works [34,36] on rate region of correlated source in network layer model the problem as
optimization problem subject to Slepian–Wolf coding rate and flow conservation rule, i.e.
incoming flow shall be equal to outgoing flow. When we consider that compress-and-forward
strategy is applied, however, the flow conservation flow is incorrect. The outgoing flow of
source X1 gets efficiently H(X1|X2) with overhearing information of source X2. There-
fore the flow conservation rule may be complete if we take the overhearing information
into consideration. Overall, we modify the rule conservation rule by treating the overhear-
ing information a special form, and the compress-and-forward strategy can be reasonably
modeled.

We hereafter assume the compress-and-forward method is applied, and encoding rate
perfect utilizes overhearing information, one remaining issue is that how to efficiently for-
ward information to destination, i.e. the routing strategy. In compress-and-forward method,
the routing mechanism influences the overall transmissions, as shown in Fig. 5. In Fig. 5,
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Fig. 5 In case a and b with different forwarder of node 3, the total transmission will be different. a Node 3
choose node 1 to be forwarder, and node 2 can overhear the two transmission flows. b Node 3 choose node 2
to be forwarder, and node 1 can overhear the two transmission flows

there are three source nodes with correlated sources (X1, X2, X3) ∼ f (x1, x2, x3) encode
with rate R1, R2, R3 to destination node D. Observed information of node 3 shall be for-
warded via node 1 or 2 and overhearing information is attainable between node 1,2. We
can see in case (a) that information of source X3 is via node 1, an achievable rate is
R1 > H(X1, X3), R2 > H(X2|X1, X3), R3 > H(X3|X1). While in case (b) an achievable
rate is R1>H(X1|X2, X3), R2>H(X2, X3), R3>H(X3|X2) if node 2 is chosen. Suppose
transmission rate guarantees lossless if inequality meets. The overall transmission flow of
observed data is different in these two cases, i.e. the network routing strategy plays an impor-
tant role to overall transmission flow. In this way, based on that compress-and-forward is
done perfectly, we seek for an optimal routing algorithm that efficiently routes correlated
source to destination with losslessly recovery of source.

In subsection B, we give an overview of notation and network model setup, and then
formulate the efficient transmission flow problem as an optimization problem while wireless
overhearing information is taken into consideration. The optimal routing algorithm is given
in subsection C after a brief introduction of the algorithm, Gibbs sampler. Subsection D we
give the simulation result.

3.2 Network Model

In this clause we construct the network model discussed in this work. A graph G = (V, E)

represents the network where V is the set of all nodes while E the set of all edges. A set of
source nodes S ∈ V, S = 1, 2, . . . , N is given and a destination node D ∈ V . Edge ei j ∈ E
exists iff j ∈ V is within transmission range of i ∈ V . For node i ∈ V , the neighboring nodes
set N (i) is defined N (i) = j : ∀ j ∈ V, ei j ∈ E . The set of sources X = {X1, X2, . . . , X N }
is assumed such that source Xi is discretely and memorylessly observed by source node
i ∈ S. A joint distribution p(x1, x2, . . . , xN ) is also given that each value of source is drawn
i.i.d. from the distribution.

The observed information from each source node is encoded and routed to destination
D such that D can recover the original source losslessly. Source node is allowed to route
information, and for node i ∈ S, the observed and relayed information is routed from i ∈ V
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to one of its neighboring node o(i) ∈ N (i). Note that D ∈ N (i) for some i , in this case, node
i can forward the observed and relayed information to destination.

In a transmission link ei j ∈ E , the transmission flow fi j is defined as the sufficient
information that shall be transmitted by node i so that all information, observed or relayed,
can be error-free transmitted. The physical transmission data is correlated but not equal to
flow. By routing mechanism, fi j > 0 iff j ∈ V routes information received from i ∈ V ,
and we denote j = o(i). A feasible flow set { fi j |i, j ∈ V ; j = o(i),∀i} is referred to a set
of flow on each transmission link that D can losslessly recover the total source information
by { fi D|D = o(i),∀i ∈ V }. Note that by compress-and-forward mechanism, a source node
i ∈ S forwards observed information as well as relayed information, i.e. f j i ,∀ j : o( j) = i .
Since flow is conserved to each node, we have the flow conservation rule usually formed as
Eq. (1) [34]

∑

j :,ei j ∈E,o(i)= j

fi j −
∑

j :e ji ∈E,o( j)=i

f j i = π(i), ∀i ∈ V, (1)

where π(i) =
⎧
⎨

⎩

H(Xi ), if i ∈ S
−H(X1, X2, . . . , X NS ), if i = D
0, otherwise.

Here we assume fi j = 0 if i = D. As we illustrate in introduction, the flow conserva-
tion rule is not satisfied in wireless network due to compress-and-forward mechanism and
overhearing information. To differentiate the transmission and overhearing link, we define
an edge indicator ti j defined over edge ei j ∈ E and ti j = 1 iff o(i) = j,∀i ∈ V and
ti j = 0 otherwise. We call it transmission link if ti j = 1, and overhearing link otherwise.
According to the routing mechanism we have

∑
j :(i, j)∈ei j

ti j = 1,∀i ∈ V . An essential
mechanism of compress-and-forward is that a node i can perform better encoding by the all
overhearing information

∑
t j i=0,∀ j f j i . Traditionally the flow fi j considers the information

flow on ei j ∈ E with ti j = 1, the inconsistence of flow conservation rule is hence resulted
by the overhearing information. A simple example shown in Fig. 4 that, for node 2 a better
encoding can be performed by overhearing information from node 1, leading to reduction
from observed information H(X2) to forwarded information H(X2|X1) and the reduction is
exactly the mutual information. The total information flow that node i has to transmit without
overhearing information is the total incoming flow Xi = ∑

t j i =1,∀ j f j i , and hence the neces-
sary information flow for node i to transmit would be H(Xi). If the overhearing information
flow is also applied to compress-and-forward mechanism, the coding performance efficiency
advised by overhearing information flow would be the mutual information between Xi and
the overhearing information by node i , as a compensation flow. Referring to Fig. 4, if the
overhearing information from node 2 results in a equivalently negative flow I (X1; X2), the
flow conservation rule would be satisfied in node 1. A more complicated example is shown
in Fig. 6. In Fig. 6 there are 4 source nodes with correlated source {X1, X2, . . . , X4} and one
destination node D. If the routing pathes is already given where the dotted lines represent
the overhearing links and the real lines represent the transmission links, we can compute
the compensation flow and the necessary information flow in each transmission link. The
incoming flow at each node would be equal to the necessary transmission flow, and the flow
conservation rule would be modified to be satisfied.

By modifying the conservation law of flow, the constraint of flow has been established. In
the following, we formulate the problem formally as an optimization problem. Since every
source node routes a transmission path to D, the overall network structure is obviously a
spanning tree with root D. If transmission flow fi j on ei j ∈ E is considered as the cost while

123



Machine-to-Machine Communications for Wireless Robotics 1105

Fig. 6 With adding of compensation flow, the flow conservation rule is satisfied

ti j = 1, and we define the optimal feasible flow set { fi j } as the minimum total flow, i.e.∑
ti j =1,∀ei j ∈E fi j , the original problem is hence to find a minimum spanning tree while the

cost is varied as the tree structure.
We therefore formulated the problem as follows:

minti j

∑

(i, j)∈E

ti j fi j

subject to ti j ∈ 0, 1, ∀(i, j) ∈ E (2a)
∑

(i, j)∈E

ti j = |V | − 1, (2b)

∑

(i, j)∈{B,B}
ti j ≤ |B| − 1, ∀B ⊆ E (2c)

f j i = I (Xi; Xj), ∀(i, j) ∈ E, ti j = 0 (2d)
∑

j :(i, j)∈E

fi j −
∑

j :(i, j)∈E

f ji = π(i), ∀i ∈ V, (2e)

where π(i) =
⎧
⎨

⎩

H(Xi ), if i ∈ S
H(X1, X2, . . . , X NS ), if i = D
0, otherwise.

Note that subject function (2a)–(2c) are the constraints of forming a spanning tree, and
by subject function (2d) and (2e) the flow of transmission links, i.e. ti j = 1, can be found.
The flow over overhearing link is modified to meet the flow conservation rule.

The minimum spanning tree is a classical NP problem. In addition to find a routing mech-
anism to achieve optimal feasible flow set, we want the routing mechanism to be distributed
since central controlling is too complex and resource-inefficiency. Hence we introduce a
distributed routing algorithm leading to optimal feasible flow based on routing-and-forward
mechanism in next subsection.
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3.3 Optimal Routing for Packets

In this subsection we propose a distributed routing algorithm that each node i ∈ V can
individually select a node j = o(i) to forward the necessary information flow fi j and the
total information flow set { fi j } achieves optimal. Before the proposal of algorithm we give
a brief introduction of the background, the Gibbs sampler. Further understanding can be
referred to [37].

3.3.1 Gibbs Sampler

For a graph G = (V, E) with node set V and edge set E , we define node i ∈ V a state λi ∈ �

where � = {1, 2, . . . , |�|} is a configuration state set. The configuration of graph is defined
as �|V | = {λ1, λ2, . . . , λ|V |} where |V | denotes the number of nodes. For a node subset
c ∈ V , the potential function Vc defined by the state of nodes, i.e. �c = {λi : i ∈ c ⊆ V }, is
associated with a real value Vc(�c) → R iff c is a clique, otherwise the value is 0. A energy
function E defined within a node subset B ⊆ V is valued related to the potential function
that

E(�B) =
∑

c:c⊆B

Vc(�c). (3)

The total energy of the entire graph is hence E(�|V |) and related to the configuration of
graph. At each state transition procedure, a node i ∈ V changes state to state λi according
to the Gibbs distribution πi (λi ) related to the local energy E(λi ) that

πi (λi ) = 1

ZT
e

−E(λi )
T , (4)

where ZT = ∑
λi ∈� e

−Ei (λi )
T is a normalization constant, and T > 0 is a temperature para-

meter. The local energy for i ∈ V is associated to the energy function of clique where node i
belongs to. i.e. E(λi ) = ∑

c:i∈c Vc(�c). Since the local energy function of node i is defined
within clique containing i , the state transition is hence related to nodes adjacent to i only.

For Gibbs sampler in every state transition procedure, node i changes to state λi according
to Eq. 4. If the temperature parameter is logarithmically decreasing with procedure iteration
time t , usually formed as T = T0

log (2+t) where T0 is a constant, and neighboring nodes do not

transit state simultaneously, the total energy of the graph E(�|V |) will approach minimum
as t → ∞. The priority of node performing state transition can be any given, e.g., transited
in order of sequence.

Since the node performing state transition procedure in Gibbs sampler is related to neigh-
boring nodes only, i.e. local energy is needed merely, the state transition procedure can
be performed distributed. We do some modifications to the Gibbs sampler to meet our
purpose and propose the routing algorithm to achieve optimal feasible flow set in next
subsection.

3.3.2 Routing Algorithm

In this subsection, we modify the Gibbs sampler described before to meet our problem
and then propose the routing algorithm. The state configuration here is modeled as the
f orwardingstatus of each node, i.e. each node is endowed as one of its own configu-
ration state λi ∈ �i = {1, 2, . . . , |N (i)|}, where |N (i)| is total number of neighboring nodes
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of i . For simplified we denote λi as o(i). The potential function is only defined on node and
its forwarding node, i.e. Vc(�c) = fi j∀c = (i, j) : ti j = 1 and Vc(�c) = 0 otherwise. The
energy function over the entire network state configuration �|V | = {o(1), o(2), . . . , o(N )}
would be the total transmission flow

∑
t j i=1,∀ei j ∈E f ji .

By the concept of compress-and-forward mechanism, each node performs efficient encod-
ing by the overhearing information. We assume the overhearing information comes from
neighboring nodes, and node i transmits sufficient information flow fio(i) by overhearing
information from its forwarding node o(i) separately. The probability of selecting λi ∈ N (i)
as forwarding node is according to the Gibbs distribution

πi (λi ) = 1

ZT
e

− fiλi
T , (5)

Overall we model the potential function as the transmission flow, and the configuration
state set is node related. By [37], the total energy of graph, i.e. the total sufficient transmission
information flow here, will approach minimum t → ∞. Therefore we propose the routing
algorithm as follows:

Algorithm 1 Gibbs

1: Calculate the temperature constant T = To
log(2+t) at time t .

2: By the overhearing information of its forwarders, node i compute the sufficient flow fi j to the possible
forwarder j based on compress-and-forward scheme.

3: Calculate the transition probability πi (λi ) according to the sufficient transmission flow to each possible
forwarder of node i , and choose a forwarder according to the distribution πi .

3.4 Simulations

In this subsection we run simulation to perform the efficiency of our proposed algorithm.
The performance of Gibbs algorithm is compared to greedy algorithm, i.e. each node selects
the node that cost least to transmit as its forwarder rather than according to Eq. 5. As greedy
algorithm is a well-known local optimal algorithm, we can see that our algorithm get better
performance through comparison with greedy algorithm both based on local approach.

In our simulation, we set N source nodes uniformly distributed in a unique square, and
set the destination node D in the middle of the square. For source nodes i, j , edge ei j exists
iff they are within transmission range. Every node selects one node within the transmission
range as its forwarder to transmit observed information to D.

The joint Gaussian model is assumed for the data sensed by source nodes. For source
nodes S = 1, 2, . . . , N the observed information is denoted as random vector Z =
(Z1, Z2, . . . , Z N ). According to [34], the pdf of observed data is assumed to be

f (z1, z2, . . . , zN ) = 1√
2π

N √
det(CZ Z )

× exp

(
− 1

2
(Z − μ)T C−1

Z Z (Z − μ)

)
,

where CZ Z is the covariance matrix of observation, and we set the correlation model

CZ Z (i, j) = σ 2e−cdβ
i j ,∀i 
= j and CZ Z (i, i) = σi

2,∀i . di j is distance between nodes i
and j , and we set the parameter c = β = 1 also.
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Fig. 7 The simulation result of Gibbs algorithm compared with greedy algorithm

Assume the sources are independently quantized as samples with same quantization step
� which is sufficiently small, and the quantize random vector X = (X1, X2, . . . , X N ) such
that H(X) = H(Z) − N log �. Therefore the conditional entropy shall be

H(X B |X Bc ) ≈ 1

2
log ((2πe)N−|Bc | det(CZ Z )

det(CZ Bc CZ Bc )
)

− (N − |Bc|) log �, (6)

where B is an subset of source and Bc represents complement. The conditional entropy would
be used as feasible flow in compress-and-forward method.

In simulation 1 we alter the number of source nodes to 50, 75 and 100 while correla-
tion parameter σ 2 = 1 is fixed. In each iteration a node chooses forwarder with different
algorithms, Gibbs or greedy, and the total sufficient transmission flow required to ensure
losslessly decoded at destination node is calculated according to Eq. 6. The simulation result
is shown in Fig. 7. In Fig. 7 we can see that basically more sources leads to more total amount
of transmission flow. The greedy algorithm is easily stick into local optimization condition,
while the we can see that the Gibbs algorithm gets better performance as time goes by and
the improvement increases as number of source nodes increases. When 100 source nodes is
deployed, Gibbs algorithm gets around 17 % improvement.

In simulation 2 the total number of source node is fixed as 100, but the correlation parameter
σ 2 is variant to 0.4, 0.7 and 1. The simulation result is shown in Fig. 8. We can see that
Gibbs algorithm achiever a better performance than greedy around 10, 15 %, and the higher
correlation of source of gets higher performance. In this simulation we can also see that when
σ 2 = 0.7 greedy algorithm converges to a larger total transmission flow than σ 2 = 0.4, which
is object to common sense. The total amount of transmission flow is also decreased as time
goes on.

As mobility of wireless robotics introduces more critical challenges in communication
efficiency, we leverage the broadcasting nature of wireless communications to implement
in-network computation, and successfully to trade communication efficiency, and subse-
quently less interference due to mobility in wireless robotics.
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Fig. 8 The simulation result of Gibbs algorithm compared with greedy algorithm

4 Coverage of Service

To complete the consideration of M2M communications for wireless robotics, we have to
further look into some more practical issues. In case the machines are randomly scattered
in the swarm, the coverage strong affects how system functions. We construct mathematical
model to find the coverage formula of the swarm by random deployment and discuss the
inefficiency due to the randomness of deployment. Mobility invokes new challenges [38,39].
Then, we discuss the effect of the availability of machines due to low battery of sensor or the
randomness of environment, and explore the philosophy of machine supplement. Finally, we
use a simple illustration to show the importance of coverage of machines/sensors, and thus
percentage of time for service availability due to coverage.

4.1 Coverage and Device Management in Machine Swarm

In a general heterogeneous architecture for wireless robotics, see Fig. 2, machines in the
swarm can gather useful information from the environment and communicate with robots to
facilitate their missions. Proper coverage of the sensors will guarantee a more accurate and
extensive information from the environment and also, has more opportunities for communi-
cation. While low coverage will induce more miss detections and communication failures. In
other M2M scenario, like sensor networks for detection of fire in a forest[40] or for detection
of intruders in a battlefield [41], high coverage can both provide a higher benefit. In general,
coverage is usually important in most networks, although they may have different meanings
depending on the context [42]. In the following subsection, we will discuss the issues regard-
ing of coverage by randomly deployment and its relation to some aspects of quality of service
of a system (QoS).

We use two factors to construct the model of network of machine swarm: random deploy-
ment and communication ability of machines, device management by considering the failure
effect of each machine, while such failure effect can arise from the uncertainty of environment
or exhausted energy in a machine.
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Since the deployment of machine in swarm is random, we recognize the Boolean model
from stochastic geometry is suitable for our scenario [43]. Our model will base on it with a few
extensions. Let the model be defined as follows. Define the region of interest (RoI) to be the
region where machines being deployed, and let the area of RoI be β. The locations of machines
in the RoI follow a Poisson Point Process (PPP). The density of the PPP λ is just the density
of the machine. Each machine in the swarm has a sensing area and a communication area.
Machine can sense information from the area within its sensing area and can communicate
with robots or other sensors/machines within its communication area. Assume each machine
is omnidirectional with sensing area being a circle with radius r centered at it. For simplicity,
we assume the communication area and sensing area are identical for each sensor. In summary,
the three elements β, λ and r together establish the swarm model.

Due to the uncertainty of environment or exhausted energy of machine, machines in
swarm will break down over time, which is a critical device management issue. To model the
situation, we assume each machine has i.i.d. lifetime hazard function which is − ln(1 − p)

per unit time (so it will break down in one unit time with probability p).

4.2 Coverage Volume Fraction (CVF)

In this subsection, we turn to formally define the coverage, and we discuss inefficiency of
uniform random deployment. Then we explore the coverage maintenance against malfunction
of machines. The coverage region be defined as the union of all the machines sensing area,
then the coverage volume fraction (CVF) is defined as the fraction of the area of the sensing
region to the area of the region of interest. We have the following proposition for CVF in our
model.

Proposition 1 Let NPPP be the deployed machine number, then the CVF is approximately

CV F ∼= 1 − e−λπr2 = 1 − e− NP P P
β

πr2
(7)

if β is large enough.

Proof This is a straightforward result from stochastic geometry, for example, see [44].
In a typical problem of coverage maintenance, the QoS requirement is that we need to

maintain a coverage fraction (CVF) above a level γ all the time. Relevant research usually
includes energy saving protocol [45,46], while we focus on the required number of supple-
mentary machines against malfunction machines by different supplement methods. Coverage
will decay and be below the QoS requirement due to failure of some machines. So, we need to
supplement machines. Machine has a failure probability p per unit time. In order to maintain
coverage fraction in one unit time, we cannot simply deploy machine with number given by
Eq. (7). We must foresee the effect of machine failure. The virtual density of machine swarm
is only (1 − p)λ. To achieve coverage fraction γ , we need to deploy NP P P (p), where p
stands for the failure probability per unit time.

NP P P (p) = − β

πr2 ln(1 − γ ) × 1

1 − p
(8)

Consider the theoretical ideal case for deployment, i.e, the failure probability of machine is
zero, and every deployed machine’s sensing area is non-overlapping, then we can achieve
zero waste of machine resource for coverage and only need a lower bound required number
of machine, Nnon−overlapping = β

πr2 γ , to achieve coverage fraction γ . Equation (8) can be
simplified to

123



Machine-to-Machine Communications for Wireless Robotics 1111

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
•

•

0.80 0.85 0.90 0.95 1.00

0

5

10

15

Coverage fraction (CVF)

R
eq

ui
re

d 
m

ac
hi

ne
 n

um
be

r

p 0.8
p 0.7
p 0.6
p 0.5

• p 0.4
p 0.3
p 0.2
p 0.1
p 0

Fig. 9 Required machine number by PPP versus coverage fraction under different failure probability p. The
numbers have been normalized by the required number of ideal non-overlapping deployment under zero failure
probability

NPPP(p) = −Nnon−overlapping
ln(1 − γ )

γ
× 1

1 − p
(9)

This suggest us to define the over-deployment factor. �
Definition 1 Define the over-deployment factor k(γ, p) to be the ratio of required machine
number by PPP to required machine number by theoretical non-overlapping deployment. So

k(γ, p) = − ln(1 − γ )

γ
× 1

1 − p
(10)

The over-deployment factor indicates the required number of deployment compared to
the ideal deployment, i.e. no failure probability and no overlapping machine. It is generally
a function of failure probability and required coverage fraction. In Fig. 9, we plot required
machine number by PPP versus coverage fraction under different failure probability. As
shown in Fig. 9 for every failure probability (even for zero failure probability), the required
number becomes extremely large for high coverage, while the required number also increases
as the failure probability. It is observed that the differences of the required number among
different failure probability are small for low failure probability while it is large for large fail-
ure probability. Thus, two factors contributes greatly to the deployment cost of machines, one
is the high coverage requirement, and the other is high failure probability. In this subsection,
we will discuss these two problems separately and, respectively.

Intuitively, uniform PPP deployment is not inefficient for low CVF, so a natural question
arises to identify an appropriate threshold for PPP maintaining an efficient deployment.
We first define the Critical Machine Number, NP P P,cri tical = β

πr2 , as the critical machine
number in our swarm model, we then immediately have the following,

Proposition 2 The increasing percentage of CVF and deployed machine number NPPP have
the following relation

dCV F

CV F
=

NP P P
NP P P,cri tical

e
NP P P

NP P P,cri tical − 1

d NP P P

NP P P
(11)
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Fig. 10 Required machine
number by PPP versus coverage
fraction under zero failure
probability. The numbers have
been normalized by the required
number of ideal non-overlapping
deployment under zero failure
probability
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By Proposition 2, for NP P P << NP P P,cri tical ,
dCV F
CV F � d NP P P

NP P P
, while dCV F

CV F � 0.
Thus, when our deployed machine number is larger than the critical machine number, or
equivalently, when we need our coverage larger the critical coverage fraction 1 − e−1 �
63.21 %, the efficiency of PPP deployment decays very rapidly. Unfortunately, in many cases,
the coverage is needed for a percentage larger than the critical coverage fraction, 63.21 %.
In Fig. 10 we summarize the idea of Proposition 2 by plotting the required machine number
versus coverage fraction under zero failure probability. In Fig. 10 critical coverage 63.21 %
divide the deployment by PPP into two regions. Below 63.21 % the region is approximately
linear representing high efficiency while above it the region is nonlinear representing low
efficiency. This suggests further modification of random deployment is needed. For example,
by providing the power and algorithm of self-configuration of machines or to use a non-
uniform random deployment.

Now we turn to device management under device failure probability. In many situations,
the QoS is required to maintain a coverage fraction (CVF) above a level γ all the time. We
have to supply extra machines/sensors given that each machine has a failure probability p
per unit time. Initially, we deploy N0 machines to achieve coverage fraction γ , but coverage
decays and thus is below the required level due to the failure of some machines. To maintain
coverage, we should supplement machines n times per unit time. This motivates the definition
of Supplement Rate as follows.

If we supplement machines per 1
n unit time, then the supplement rate is defined to be n.

Given supplement rate n, there is a minimum number �Nn we shall supplement in total in
one unit time. Figure 11 illustrates this idea.

Recall that the lifetime hazard function of each machine is − ln(1 − p) and i.i.d., we have

�Nn = n
(
(1 − p)

−1
n − 1

) β

πr2

(
− ln(1 − γ )

)
(12)

Since �Nsupplement,n is decreasing with n, we can reduce the total supplement amount
by increasing the supplement rate. However, there is a theoretical lower bound NLower by
increasing the supplement rate.

�NLower = (− ln(1 − p))
β

πr2 (− ln(1 − γ )) (13)

Finally, although raising supplement rate will reduce the additional deployed machine
amount while maintaining the CVF above a desired level γ , the time averaged CVF
will also be reduced, i.e. the time average CVF by supplement rate n is defined by
limT →∞ 1

T

∫ T
0 CV F(t)dt and we have
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Fig. 11 The γ is the coverage fraction level we want to maintain all the time, so we supplement machines by
the number 1

n �Nn per 1
n unit time

lim
T →∞

1

T

T∫

0

CV F(t)dt = 1 − n

1
n∫

0

(1 − γ )(1−p)
−1
n +t

dt (14)

Device management can be viewed as a trade-off between number of deployed machines
and the time averaged CVF.

4.3 Cooperation among Multiple Operators

An practical problem considering the feasibility of machine swarm network is the huge cost
of machine deployment for each operator of machines. A cooperation of machine deployment
among multiple operators is thus desirable. However, due to the selfish nature of operators,
i.e. they want to optimize their benefits only, the cooperation must give enough incentives
for each operator. We can therefore model this situation by a cooperative game and using the
Shapley Value method to obtain a fair cost sharing rule. We use a simple example to illustrate
this idea. Let the cooperation between different operators by a cooperative game [47], which
consists of

• Player set N: The set of operators, indexed by 1, 2, . . . , N
• Characteristic function C : A real function of any subset of N which gives the total cost

of any coalition of operators formed by the subset of N

• Imputation x: A real vector x = [x1, x2, . . . , xN ]T satisfying

1.
∑

i∈N
xi = C(N)

2. x ≤ C({i}) ∀i ∈ N

which represents a cost sharing rule for the grand coalition (coalition formed by all
operators) such that the cost share is lower than the cost for deploying alone for each
operator.

The cost of a coalition is defined as the total sum of number of sensors needed to be
deployed in every region. Mathematically speaking, the cost is constructed by the following
steps:
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• There are M different regions, represented by Ai , i = 1, 2 . . . , M , each with area ‖Ai‖
• The required coverage vector αi = [αi1, αi2, . . . , αi M ]T denotes the desirable coverage

(inelastic QoS) in each region for operator i
• By using the coverage formula, the cost for operator i to deploy alone is C({i}) =∑M

j=1 − ln(1 − αi j )
‖A j ‖
πr2

• The total cost of of a coalition S ⊆ N is equal to the sum of largest required number of

sensors in each region, which is C(S) = ∑M
j=1 − ln(1 − max

i∈S

αi j )
‖A j‖
πr2

Now the problem is how to choose a cost sharing method which is denoted by a vector x with
component xi representing the cost share of operator i . Since the sharing rule should pass
the stability criteria in the sense that once an operator joins the grand coalition, this operator
will not leave the coalition, and the efficiency criteria, i.e. the sum of cost share is equal to
the total cost. Mathematically speaking, the designed sharing rule x should satisfy

∑

i∈S

xi ≤ C(S) =
M∑

j=1

− ln
(

1 − max
i∈S

αi j

)‖A j‖
πr2 ∀S ⊆ N (15)

∑

i∈N

xi = C(N) =
M∑

j=1

− ln
(

1 − max
i∈N

αi j

)‖A j‖
πr2 (16)

The notion of above criteria is called the core [48] which is a central concept in coalitional
games. However, the sharing rule satisfying above criteria is not unique. So a criteria refine-
ment is required for a deeper analysis. We use following three additional criteria refinements.

1. Symmetry: if two different operators have exactly the same required coverage vector α,
then their cost share should be the same

2. Fairness: an operator with higher coverage requirement should absorb more cost
3. Flexibility: the sharing rule of different regions can be derived separately, so if operators

want to negotiate a cooperation contract for a new region in the future, they could focus
on the new contract while ignoring the past contract history.

A theory from coalitional game shows that the solution exists and is unique, which is given
by the so called Shapley Value [49],

xi =
∑

S⊆N;i∈S

(N − |S|)!(|S| − 1)!
N ! [C(S) − C(S − {i})] ∀i ∈ N (17)

where |S| is the number of operators in the coalition S.
By [50], a simple algorithm gives the formula of the Shapley Value,

1. assume there are there are n jk operators with coverage requirementβ jk in A j and different
required coverage in region A j is sorted by

0 = β j,0 < β j,1 < β j,2 < · · · < β j,m j

2. Let sk = ∑m j
i=k n ji , representing the number of operators with coverage requirement

greater or equal to β jk in region A j , then the Shapley Value of operator l is

M∑

j=1

i∑

k=1

‖A j‖
πr2sk

ln

(
1 − β j,k−1

1 − β j,k

)

if operator l has coverage requirement β j i in region A j , j = 1, 2 . . . , M .
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Fig. 12 The percentage of reduced sensors for operator A under cooperation with operator B by using Shapley
value, where α is the coverage requirement

Figure 12 shows the percentage of reduced cost for an operator under cooperation with one
other operator in one area. In Fig. 12, we see an operator with lower coverage requirement can
reduced up to 50 % of cost. The more operators in a coalition, the more reduced percentage
one can achieve. We also see that an operator with higher coverage requirement will also
cost more than others, which is an result of fair share. In summary, the method of Shapley
Value can be extended to other situations with different payoff structure and may serve as a
cure for the high cost of machine deployment.

4.4 Coverage of Service of Robots with Mobility

As mobility should be taken into account in M2M for wireless robotics. We use a simple
illustration to show the percentage of time for service availability due to coverage within the
communication region constituted by the machine swarm. We use the as a system quality of
service (QoS). We consider a somewhat simplified but inspiring case. Let a robot moving
with an uniform speed v across a field constituted by a large sensor swarm with density λ.
The robot crosses the field by following a path L with total length |L|. The mean percentage
of time of the robots within the coverage region of the sensor swarm is φ. And φ can be
calculated as follows.

φ = E
[ ∫

L 1{x is covered by some sensors}dx
]
/v

|L|/v
=

∫
L E

[
1{x is covered by some sensors}

]
dx

|L|
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= Pr{x is covered by some sensors}|L|
|L|

= 1 − e−λπr2 = CV F (18)

Thus the percentage of time of coverage by some sensors is exactly equal to the coverage
fraction (CVF) of sensor swarm. In fact, this property can be generalized to a family of sensor
network described in the following proposition.

Proposition 3 If the set of sensors and its sensing area can be modeled as a stationary
ergodic random closed set [41] (e.g. PPP deployment with i.i.d. random compact sensing
area), the mean percentage of time for a robot being under coverage of sensors when moving
across the sensor swarm with uniform speed is equal to the coverage fraction (CVF) of the
sensors.

Proof Let φ be the mean percentage of time then

φ = E
[ ∫

L 1{x is covered by some sensors}dx
]
/v

|L|/v
=

∫
L E

[
1{x is covered by some sensors}

]
dx

|L|
= Pr{x is covered by some sensors}|L|

|L| (by stationarity)

= CV F (by stationarity and ergodicity) (19)

The example shows that coverage is important for robotics with mobility. In this section,
we always assume the swarm can be modeled by Boolean model so the coverage and mean
percentage of time under service is equivalent. However, for non-uniform sensor deployment,
the Proposition 3 may fail, and the mean percentage of time may not be equivalent to the
coverage fraction. We also expect cooperation working for mobility. �

5 Conclusions

The entire information system for wireless robotics involves computation for robot operation
and M2M communications for twofold purpose, control of robots and information exchange
with environment (primarily information collection from sensors). In Sect. 3, we demonstrate
in-network computation to be useful to significantly reduce the number of packets to transmit
and thus reduce the required valuable communication bandwidth. Effective communication
obviously can also reduce the computation. Along with machine coverage, more in-depth
understanding of in-network computation may suggest further research toward optimal design
of entire information systems for wireless robotics, to facilitate effective systems.
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